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van Laar Correlation
Another two-parameter excess Gibbs energy model was developed 
from an expansion of (RTx1x2)/GE instead of GE/RTx1x2.  The end 
results are:

(12.16)
for the excess Gibbs energy and:

(12.17a)

(12.17b)

for the activity coefficients.

Note that: as x1→0, lnγ1
∞ → A’12

and as x2 → 0, lnγ2
∞ → A’21
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Example 2 (Problem 5, Practice Problem Set #4)

P5. Vapour liquid data for the system 1,4 dioxane(1)/ethylbenzene(2) at 85 oC
are provided below. From these data obtain estimates of the van Laar coefficients 
(estimates based on smoothly drawn curves on the enclosed graph paper are 
sufficient). Estimate values of P-x1-y1 for x1=0.5 based on these parameter values. 
Table 2: VLE data for the system 1,4 dioxane/ethylbenzene at 85 oC

1157.8

0.910.7852.4

0.70.4441.6

0.550.2935.2

0.150.06523.4
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Local Composition Models
Unfortunately, the previous approach cannot be extended to 
systems of 3 or more components.  For these cases, local 
composition models are used to represent multi-component 
systems.

Wilson’s Theory
Non-Random-Two-Liquid Theory (NRTL)
Universal Quasichemical Theory (Uniquac)

While more complex, these models have two advantages:
the model parameters are temperature dependent
the activity coefficients of species in multi-component liquids 
can be calculated using information from binary data.

A,B,C A,B A,C B,C

tertiary mixture binary binary binary
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Wilson’s Equations for Binary Solution Activity

A versatile and reasonably accurate model of excess Gibbs Energy
was developed by Wilson in 1964.  For a binary system, GE is 
provided by:

(12.18)

where
(12.24)

Vi is the molar volume at T of the pure component i.
aij is determined from experimental data.  

The notation varies greatly between publications.  This includes,
a12 = (λ12 - λ11),  a21 = (λ12 - λ22) that you will encounter in 
Holmes, M.J. and M.V. Winkle (1970) Ind. Eng. Chem. 62, 
21-21.
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Wilson’s Equations for Binary Solution Activity

Activity coefficients are derived from the excess Gibbs energy 
using the definition of a partial molar property:

When applied to equation 11.16, we obtain:

(12.19a)

(12.19b)
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Wilson’s Equations for Multi-Component Mixtures

The strength of Wilson’s approach resides in its ability to describe 
multi-component (3+) mixtures using binary data.  

Experimental data of the mixture of interest (ie. acetone, 
ethanol, benzene) is not required
We only need data (or parameters) for acetone-ethanol, 
acetone-benzene and ethanol-benzene mixtures

The excess Gibbs energy for multicomponent mixtures is written:

(12.22)

and the activity coefficients become:

(12.23)

where Λij = 1 for i=j.  Summations are over all species.
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Wilson’s Equations for 3-Component Mixtures

For three component systems, activity coefficients can be 
calculated from the following relationship:

Model coefficients are defined as (Λij = 1 for i=j): 
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Comparison of Liquid Solution Models

Activity coefficients of 2-methyl-
2-butene + n-methylpyrollidone. 

Comparison of experimental 
values with those obtained from 
several equations whose 
parameters are found from the 
infinite-dilution activity 
coefficients. 
(1) Experimental data. 
(2) Margules equation. 
(3) van Laar equation. 
(4) Scatchard-Hamer equation. 
(5) Wilson equation. 
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Non-Ideal VLE to Moderate Pressures: Overview SVNA 14.1

We now have the tools required to describe and calculate vapour-
liquid equilibrium conditions for even the most non-ideal systems.

1. Equilibrium Criteria:
In terms of chemical potential

In terms of mixture fugacity

2. Fugacity of a component in a non-ideal gas mixture:

3. Fugacity of a component in a non-ideal liquid mixture:

l
i

v
i μ=μ

l
i

v
i f̂f̂ =

P)y,...,y,y,P,T(ˆy)y,...,y,y,P,T(f̂ n21
v
iin21

v
i φ=

⎥
⎦

⎤
⎢
⎣

⎡ −
φγ=

γ=

RT
)PP(VexpP)x,...,x,x,P,T(x

f)x,...,x,x,P,T(x)x,...,x,x,P,T(f̂
sat
iisat

i
sat
in21ii

l
in21iin21

l
i



CHEE 311 Lecture 18 10

γ, φ Formulation of VLE Problems
To this point, Raoult’s Law was only description we had for VLE 
behaviour:

We know that calculations based on Raoult’s Law do not predict 
actual phase behaviour due to over-simplifying assumptions.

Accurate treatment of non-ideal phase equilibrium requires the use 
of mixture fugacities.  At equilibrium, the fugacity of each 
component is the same in all phases.  Therefore,

or,

determines the VLE behaviour of non-ideal systems where Raoult’s 
Law fails.
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Non-Ideal VLE to Moderate Pressures

A simpler expression for non-ideal VLE is created upon defining a 
lumped parameter, Φ.

The final expression becomes,

(i = 1,2,3,…,N) 14.1

To perform VLE calculations we therefore require vapour pressure
data (Pi

sat), vapour mixture and pure component fugacity 
correlations (Φi) and liquid phase activity coefficients (γi).
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Non-Ideal VLE to Moderate Pressures

Sources of Data:
1. Vapour pressure: Antoine’s Equation (or similar correlations)

14.3

2. Vapour Fugacity Coefficients: Viral EOS (or others)

14.6

3. Liquid Activity Coefficients
Binary Systems - Margules,van Laar, Wilson, NRTL, 
Uniquac
Ternary (or higher) Systems - Wilson, NRTL, Uniquac
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