
Supplementary Notes for  
Chapter 9 Mixture Thermodynamics 

 
Key points 

 
Nine major topics of Chapter 9 are reviewed below: 

 
1. Notation and operational equations for mixtures 
2. PVTN EOSs for mixtures 
3. General effects of mixing on heat and work interactions and state property changes  
4. Gibbs-Duhem relationship and thermodynamic consistency  
5. Mixing functions 
6. Ideal gas mixtures and ideal solutions 
7. Fugacity and activity concepts 
8. Fugacity coefficients from PVTN EOS property relationships  
9. Activity coefficients from ∆GEX property relationships  
10. Ideal reversible work effects in mixing or separating components 

 
1.  Notation and operational equations for mixtures 
 
Partial molar properties are extensive properties that determine how derived properties 
change as a function of mole number or composition. For a general property, B, which could 
be U, H, S, V, or A, the partial molar B is defined as: 
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There are a few important relationships in Chapter 9 that allow you to calculate partial molar 
properties given the extensive form B of the property or the intensive form B.  
 

An important one of these is: 
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Note that for a binary, two component system that Eq.(9-53) quickly yields the tangent-
intercept method of evaluating partial molar properties from a graph of B versus xj at 
constant T and P. For example, see Figure 9.1 and the discussion in the text.  
 

2.  PVTN EOSs for mixtures 
 
Volume and pressure explicit equations of state are commonly used to represent the 
volumetric properties of fluid mixtures of both gases and liquids.  The key feature that 
distinguishes a mixture EOS from its pure component counterpart is the presence of 
compositional dependence.  This dependence expresses itself in the form of so-called 
“mixing rules” that incorporate pure component EOS parameters and weight them 
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proportionally to the concentration of each component following a specific mathematical 
recipe. With the exception of the virial equation of state no rigorous theoretical approach 
exists to specify a mixing rule recipe.   The most common approach is to use some variation 
of the Lorentz-Bertlelot rules used by van der Waals and others over a century ago (see 
Eqs (9-17 and 9-18).  In mixtures that exhibit considerable non-ideality, a binary or higher 
order interaction parameter δij  is introduced to capture specific interactions between 
molecules of type i and j. 
 
Each mixture PVTNi  EOS will have some prescribed recipe for its mixing rules.  For 
example see the conventions followed for the RK and PR EOS on pages 324- 326.  In 
situations where high level non-ideal effects are present often more complex forms for 
mixing rules are introduced. The Wong-Sandler and Chueh-Prausnitz rules discussed on 
pages 327-328 are examples of this type of mixing rule.     
 
3. General effects of mixing on heat and work interactions and state property changes  
 
There are a few typical classes of problems that you should be able to solve. These include: 
 

• Calculating the change in enthalpy as a result of mixing to determine a heat 
interaction for maintaining a constant temperature or to follow some prescribed recipe 
for temperature, for example, see Problem 9.2.  

• Calculating a change in volume as a result of mixing to determine a change in density 
or the magnitude of a work interaction at constant pressure. 

 
4. Gibbs-Duhem relationship and thermodynamic consistency  
 
For mixture data and correlations – for any property B, the partial molar quantities are 
interrelated through the use of the general Gibbs-Duhem relationship: 
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Note that B is a function of T, P, and xi for i = 1, … , n. The Gibbs-Duhem relationship can 
be applied to any partial molar property, such as: 
 

i i i i i   ln  ln   ln  ln  .i i i
ˆˆH , V , , , f , G , a , , etcµ φ γ  
 

For a binary system, the Gibbs-Duhem relationship is frequently used to check 
thermodynamic consistency of thermodynamic data; for example, activity coefficients. 
Additionally, for a binary mixture, if you have a measurement of the partial molar property of 
one component as a function of composition you can determine the property for the other 
component.  
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5. Mixing functions 
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which is in intensive form. A similar expression results for ∆Bmix in extensive form with xi  
replaced by Ni. You should be familiar with the concept of a reference state (+). Strictly 
speaking, reference states are arbitrary, but in practice several common forms appear for xi

+
 , 

T+, and P+, for example: 
 

(1) pure i at T and P of the mixture  
(2) xi

+ → 0 at T and P of the mixture— that is in an infinite dilution state where 
Henry’s law behavior is followed  

(3) a fixed composition of 1 molal or 1 molar concentration at T and P of the mixture 
that behaves in some ideal manner – commonly used for electrolytes (see 
Chapter 12) 

 
6. Ideal gas mixtures and ideal solutions 
 
In this section of the text, a set of definitions were used to characterize non-ideal solutions in 
terms of a deviation from ideal behavior. 
 

• ideal gas mixture:   ( ) ln ig
i i i iG RT y P= µ = + λ T  

• ideal solution:  ( ) ln ID
i i i iG RT x T= µ = + Λ ,P  

 
where λi and Λi are constants specific to component i.   The key points to remember are that 
partial pressure yiP is the ideal gas mixture compositionally dependent variable while for 
ideal condensed phase solution it is the mole fraction xi .   
 
7. Fugacity and activity concepts 
 
For a real mixture or solution we introduce the following models:  
 

real fluid mixture:   ln i i i
ˆG RT f i= µ = + λ  

real solution:  ( ) ln i i i i iG RT a T ,P ,x+ + + += µ = + µ  
which lead to the following definitions of the fugacity coefficient and activity coefficient  

iφ̂ and γi , respectively: 
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8. Fugacity coefficient relationships from PVTN EOS property models  
 
There are two basic approaches— one involving pressure explicit EOSs like the PR or RKS, 
and the other for volume explicit EOSs, such as Virial or Corresponding States formulations, 
including compressibility expansions in density or molar volume or similarly structured 
equations. Equations (9-142) and (9-143) provide convenient forms for pressure explicit EOS 
models for mixture and pure components, respectively, while Eqs(9-129) and (9-127) work 
for volume explicit EOS models.  
 
For example, for component i in a mixture: 
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At this point you should know how to calculate the fugacity or fugacity coefficient for a pure 
component using a pressure- or volume-explicit EOS or for a component in a binary mixture 
using a suitable PVTN EOS that has been properly formulated with mixing rules for its 
constants (for example, the amix and bmix constants in the RKS EOS) in terms of pure 
component properties and a binary interaction parameter, eg δij. Being able to do this 
provides a powerful tool for calculations required later in the course, for example to estimate 
the vapor pressure of a pure component you would equate iφ̂  for the liquid and vapor phases 
at a given temperature by estimating the P and using the EOS to calculate liquid and vapor 
volumes (densities) until the fugacity coefficients for each phase were equal. 
 
9. Activity coefficients from ∆GEX property relationships 
 
The activity coefficient is defined in terms of the partial molar excess Gibbs free energy of 
mixing and can be directly related to the fugacity using the definition of activity:  
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To evaluate the partial derivative we need an expression for ∆GEX: 

( ), ,  1,...,EX ID
mix iG G G f T P N i n∆ ≡ ∆ − ∆ = =⎡ ⎤⎣ ⎦  

 
which represents the difference between the actual enthalpy of mixing and the enthalpy of 
mixing for an ideal solution at the same T, P and composition as the actual mixture.   
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Typically, one has access to a model that gives ∆GEX  =  ∆GEX / N as a function of T, P, and 
xi, and with Eq. (9-53) one can easily obtain γi for each component, e.g. 
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In addition, the Gibbs-Duhem equation can be applied to calculate the other activity 
coefficient given a set of data for one component (e.g. if γsolvent is known as a function of 
composition then γsolute can be estimated by integrating the Gibbs-Duhem relationship). 
Conversely, if both activity coefficients of a binary mixture are known then the Gibbs-
Duhem equation can be used to check the thermodynamic consistency of a given set of data. 
For example, the slope and area tests have been developed specifically for this purpose 
(see pages 357-358 and Fig. 9.3).  
 
A key issue here is how to deal with the standard or reference state condition (+), as that will 
have a direct effect on the magnitude and behavior of γi. If a symmetric reference state is 
used then (  i i

ˆ )f f pure i+ = and the Lewis and Randall rule is followed as xi goes to 1.0 with γi 
approaching 1.0. Alternatively, a unsymmetrical reference state can be used where the 
infinite dilution behavior as defined by Henry’s Law determines that γi

** approaches 1.0 as xi 
goes to 0. This is frequently called the McMillan-Mayer reference condition. Another popular 
alternative commonly employed for electrolytes is to use a 1 molal solution at T and P of the 
mixture where the mixture follows Henry’s Law in dilute solutions as xi or mi →0 (see Fig. 
9.9 for example).  
 
The discussion in the text from pages 360 to 365 should be carefully reviewed to see how the 
activity coefficient is related to fugacity behavior for different reference state conditions. 
Particular attention should be paid to Figures 9.6 – 9.9.  

 
10.  Ideal reversible work associated with mixing or separating components  
 
Under isothermal conditions the reversible work is equal to the net change in Gibbs free 
energy associated with the process, more generally the reversible work can be related directly 
to the change in availability using the methods introduced in Chapter 14. Examples 9.8 and 
9.9 should be reviewed to see how the concepts are employed. The approach is quite 
straightforward if you are dealing with a steady state process. Things are a bit more 
complicated if the system or process conditions are changing with time, but the general 
concept remains unchanged.  
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