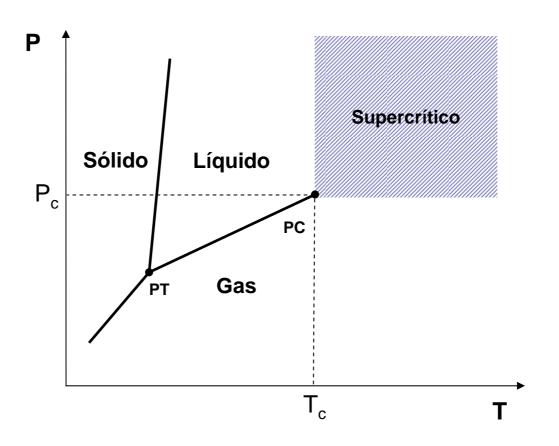
LABORATORIO DE PROCESOS DE SEPARACIÓN POR MEMBRANAS (LABPROSEM)
Universidad de Santiago de Chile
Departamento de Ingeniería Química

Modelación y simulación de un sistema de extracción supercrítica utilizando contactores de membrana de fibras huecas

Humberto Estay, <u>Julio Romero</u> y Aldo Saavedra

OBJETIVOS DEL ESTUDIO

- Caracterizar y describir fenomenológicamente una operación de extracción supercrítica (SFE) sobre soluciones líquidas utilizando un sistema de contacto con membranas.
- Confeccionar, mediante una serie de algoritmos, un modelo matemático que permita predecir el rendimiento del sistema a través del porcentaje de extracción y realizar escalamiento.
- Identificar las etapas limitantes en el rendimiento del proceso simulando diversas condiciones de las corrientes de alimentación y del gas denso de extracción


¿QUÉ ES UN FLUIDO SUPERCRÍTICO?

P > P_c: Presión crítica

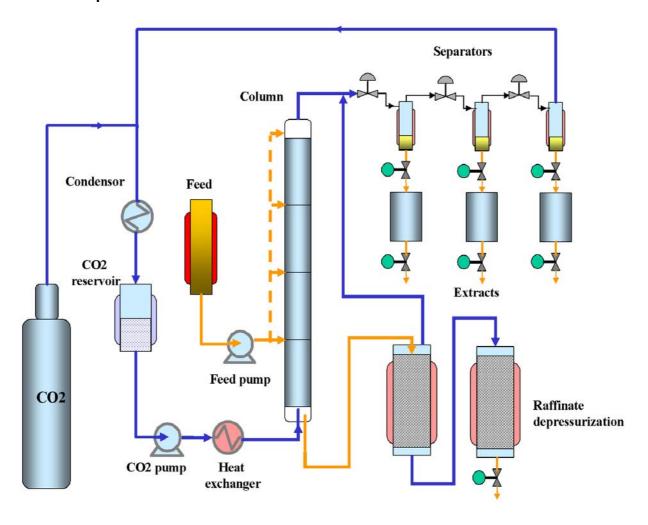
 $T > T_c$: Temperatura crítica

Propiedades termodinámicas y de transporte presentan una transición entre la fase gas y líquida

DIÓXIDO DE CARBONO SUPERCRÍTICO

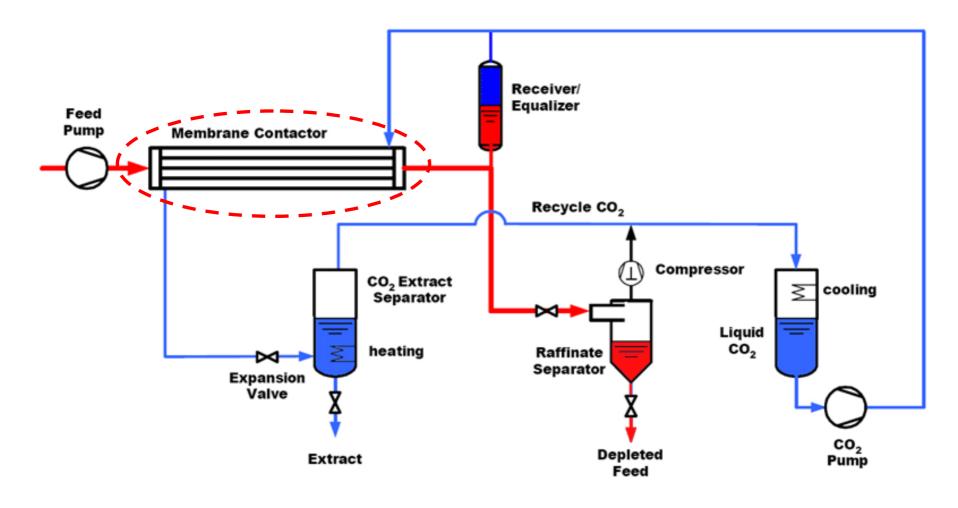
CO₂ supercrítico (CO₂ SC)

$$P > P_c = 74 \text{ bar}$$

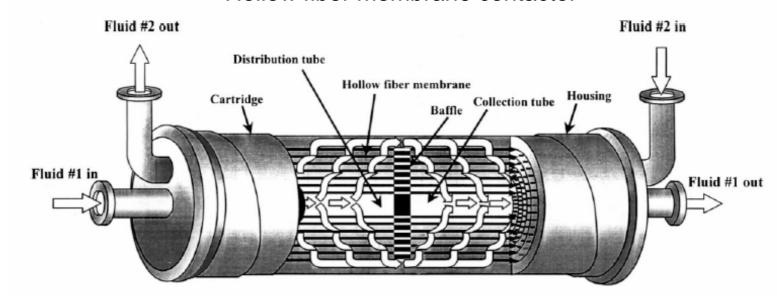

$$T > T_c = 31 \, {}^{\circ}C$$

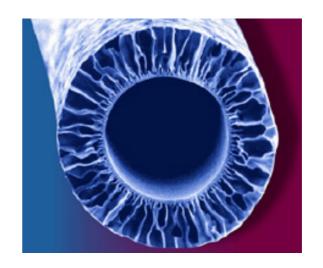
- ✓ Punto crítico relativamente bajo
- √ Bajo costo
- ✓ Químicamente inerte
- ✓ No tóxico
- ✓ poder solvente "regulable"
- Alta densidad (como un líquido), originando su gran poder solvente debido al incremento de la constante dieléctrica (permitividad relativa).
- Valor de viscosidad intermedio entre líquido y gas. El fluido en este estado fluye con mayor facilidad que los solventes líquidos convencionales.
- Coeficientes de difusión un orden de magnitud mayor que el de un líquido, favoreciendo la transferencia de materia.

EXTRACCIÓN SUPERCRÍTICA EN LÍQUIDOS

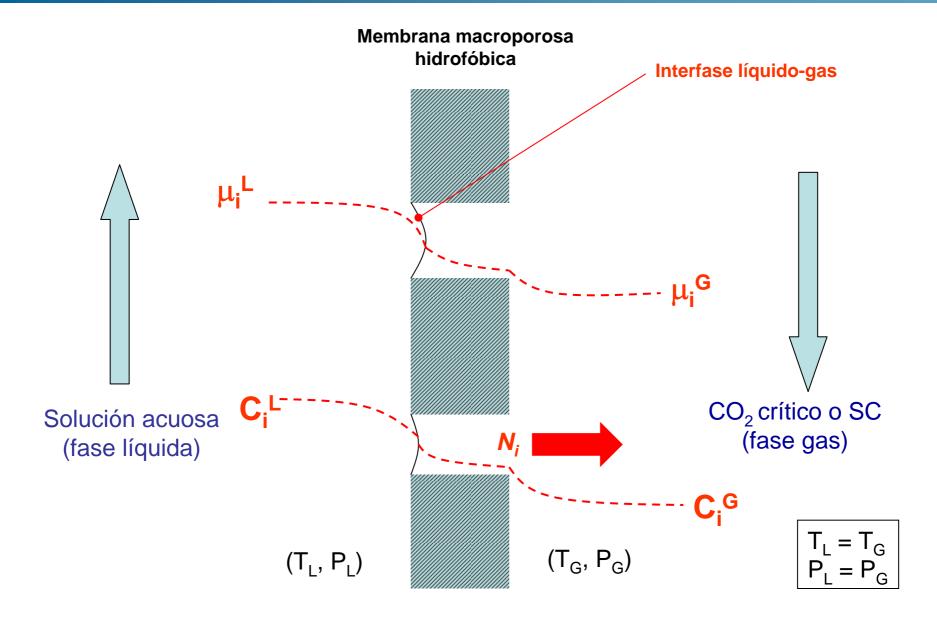

Sistema de fraccionamiento con fluidos supercríticos (SFF) utilizando una columna empacada

EXTRACCIÓN POROCRIT®


Commercial Scale Continuous Countercurrent Porocritical Fluid Extraction/Purification


CONTACTOR DE MEMBRANA DE FIBRAS HUECAS

Hollow fiber membrane contactor



¿CÓMO FUNCIONA LA EXTRACCIÓN POROCRIT?

FSC + CONTACTOR DE MEMBRANA

¿Por qué acoplar un proceso de SFE con una operación de contacto con membranas?

- La extracción Porocrit es una alternativa eficiente a los dispositivos de contacto convencionales donde se dispersa una fase en otra
- •Los contactores de membrana no son afectados por inundamiento, arrastre ni emulsificación. Hay independencia de la diferencia de densidades de las fases contactadas y el diseño es modular (No requiere de recipientes de costo elevado, sólo requiere tuberias y bombas)
- La simplificación de la instalación facilita la aplicación del CO₂ como un solvente no tóxico y ambientalmente competitivo
- Un módulo de contactor de membrana de fibras huecas (hollow fiber membrane contactor) posee un área específica de contacto de hasta 10.000 (m²/m³) (hasta 100 veces mayor a una torre empacada convencional)

Flujo de Soluto transferido:

$$N_i = \overline{K_i} A_T \Delta C_{ML}$$

Modelo basado en un sistema constituido por tres resistencias de transferencia de masa en serie:

- 1) Capa límite de la corriente líquida de alimentación.
- 2) Capa de gas denso estancado en el poro (+ equilibrio de fases).
- 3) Capa límite fase gas denso (fluido supercrítico o subcrítico).

$$\frac{1}{K_{i}} = \frac{1}{k_{W}} + \frac{d_{i}}{d_{ML}k_{m}m_{i}} + \frac{d_{i}}{d_{o}k_{o}m_{i}}$$

$$\Delta C_{ML} = \frac{(C_l - C_{sc} / m_i)_1 - (C_l - C_{sc} / m_i)_2}{\ln \left[\frac{(C_l - C_{sc} / m_i)_1}{(C_l - C_{sc} / m_i)_2} \right]} \qquad m_i = \frac{C_{sc}}{C_l}$$

Condiciones operacionales para las simulaciones y la validación del modelo

Condiciones experimentales (Bothum et al., 2003)			
Presión (líquido y gas)	69 bar		
Temperatura	298 K		
Composición de la solución a tratar	10 % p/p		
(X _{EtOH} , X _{acetone})			
Parámetros estructurales de la membrana			
Material	Polipropileno		
Material Número de fibras, n	Polipropileno 1		
Número de fibras, n	1		
Número de fibras, n Largo, L	1 1.07 m		
Número de fibras, n Largo, L Diámetro interno, d _{in}	1 1.07 m 0.6 mm		

Estimación de los coeficientes locales de transferencia de masa

Propiedad	Sistema	Modelo o Ecuación	Referencia
k _W	CO ₂ -H ₂ O-Etanol CO ₂ -H ₂ O-Acetona	Ecuación de Sieder y Tate	Bird et al., 1998
k _m	CO ₂ -H ₂ O-Etanol CO ₂ -H ₂ O-Acetona	Modelo de transporte por Difusión Molecular	Gabelman et al., 1999
k _o	CO ₂ -H ₂ O-Etanol CO ₂ -H ₂ O-Acetona	Correlación de Yang y Cussler	Yang et al., 1986

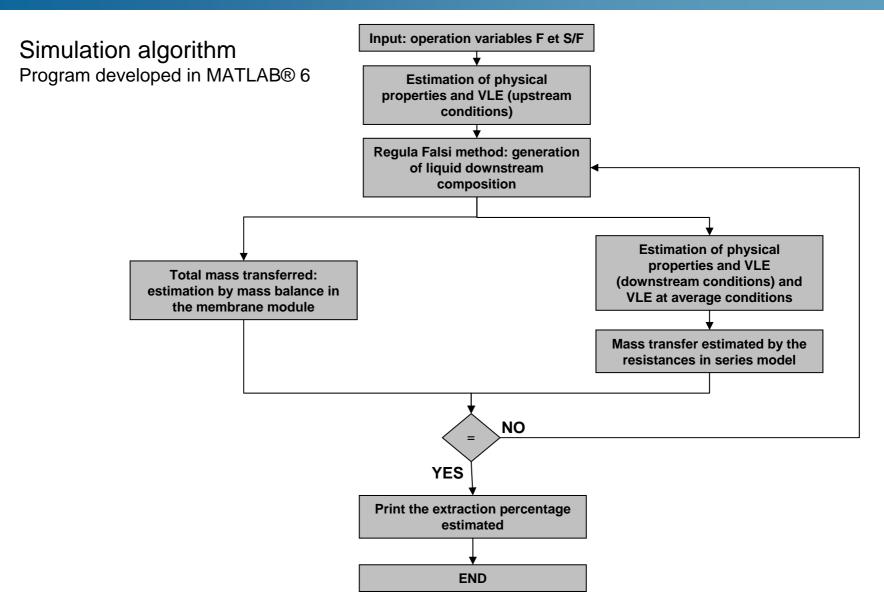
Estimación de las propiedades físicas de la fase acuosa de alimentación

Propiedad	Sistema	Modelo o Ecuación	Referencia
ρ_{W}	H₂O-Etanol H₂O-Acetona	Este trabajo (relación empírica)	(Empírica) Perry et al., 1998
η_W	H₂O-Etanol H₂O-Acetona	Este trabajo (relación empírica)	(Empírica) Perry et al., 1998
D _W	H₂O-Etanol H₂O-Acetona	Modelo de Lusis-Ratcliff Modelo de Reddy-Doraiswamy	Reid et al., 1977

Estimación de las propiedades físicas de la fase extractante (CO₂ supercrítico o subcrítico)

Propiedad	Sistema	Modelo o Ecuación	Referencia
$ ho_{\sf SC}$	CO ₂ -Etanol CO ₂ -Acetona	Ecuación de estado de Peng-Robinson	Brunner., 1994
η _{sc}	CO ₂ -Etanol CO ₂ -Acetona	Modelo Multiparámetrico de Chung Ecuación de Reichenberg para gas denso	Chung et al., 1988 Reid et al., 1977
D _{SC}	CO ₂ -Etanol CO ₂ -Acetona	Ecuación de Catchpole y King Modelo de Funazukuri	Catchpole et al., 1994 Funazukuri et al, 1992

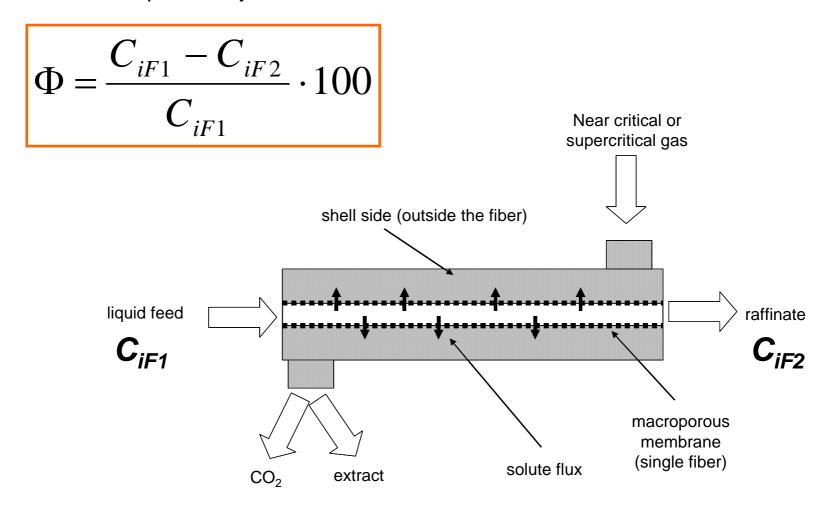
Estimación de los coeficientes de distribución del soluto entre cada fase


Modelo empírico, basado en datos bibliográficos (Budich et al., 2003; Hirohama et al., 1993; Traub et al., 1990; etc) para ambos sistemas en estudio: H₂O-etanol-CO₂ y H₂O-acetona-CO₂

$$m_i = f(P, T, x_i)$$

(Estay, 2004)

ALGORITMO DEL MODELO DE TRANSPORTE



ALGORITMO DEL MODELO DE TRANSPORTE

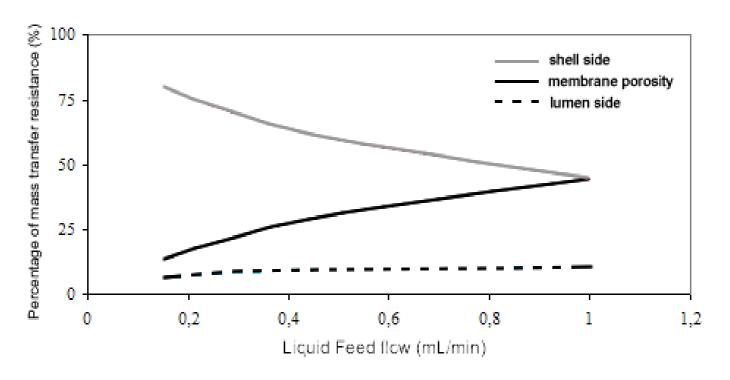
Definición del porcentaje de extracción

RESULTADOS: VALIDACIÓN DEL MODELO

Resultados experimentales y teóricos del porcentaje de extracción de **acetona** a partir de una solución acuosa (10% p/p) (P = 69 bar; T = 298 K; módulo monofibra)

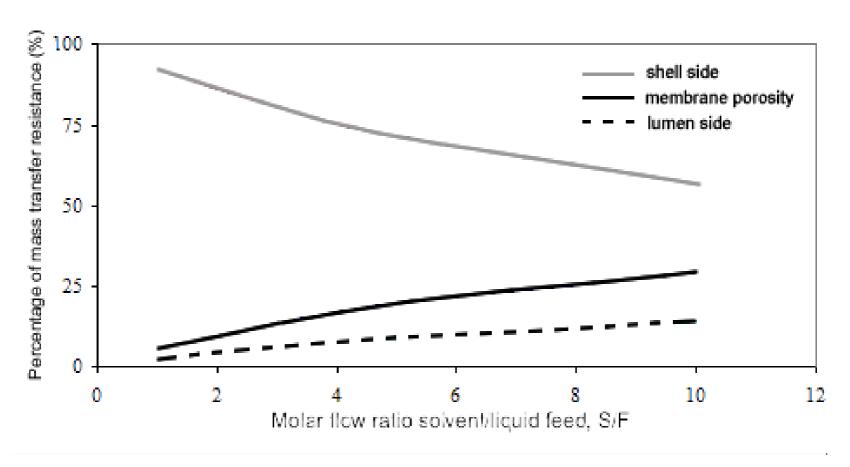
F (ml min ⁻¹)	S/F	Φ_{EXP} (%)	Φ _{MOD} (%)
0.15	3	96.1 ± 1.8	94.81
0.25	3	89.6 ± 1.8	88.32
0.5	3	68.9 ± 1.8	74.13
1	3	67.9 ± 1.9	56.55

RESULTADOS: VALIDACIÓN DEL MODELO

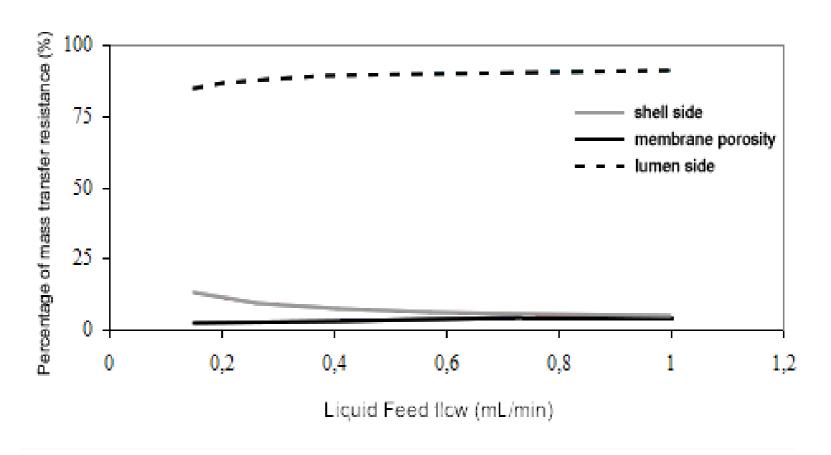


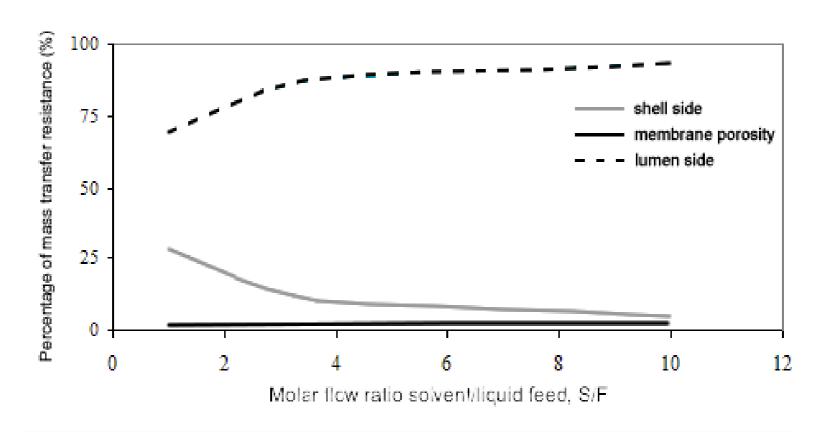
Resultados experimentales y teóricos del porcentaje de extracción de **etanol** a partir de una solución acuosa (10% p/p) (P = 69 bar; T = 298 K; módulo monofibra)

F (ml min ⁻¹)	S/F	Φ_{EXP} (%)	Φ _{MOD} (%)
0.15	3	15.2 ± 0.5	13.57
0.25	3	10.4 ± 0.5	12.36
0.5	3	4.7 ± 1.8	10.31
1	3	9.9 ± 0.5	7.92
0.1	10	31.9 ± 1.4	35.82



$$RTDM_{l} = \frac{\left[(m_{i} / k_{l})_{1} + (m_{i} / k_{l})_{2} \right] / 2}{1 / \overline{K}_{o}} \cdot 100$$


Percentages values of the individual mass transfer resistances for the **ethanol** extraction in function of the liquid feed flow (F), when the molar flow ratio is S/F = 3, P = 6.9 MPa, T = 298 K.


Percentages values of the individual mass transfer resistances for the **ethanol** extraction in function of the molar flow ratio solvent/liquid feed (S/F), when the liquid feed flow is F = 0.15 mL/min, P = 6.9 MPa, T = 298 K.

Percentages values of the individual mass transfer resistances for the **acetone** extraction in function of the liquid feed flow (F), when the molar flow ratio is (S/F) = 3, P = 6.9 MPa, T = 298 K.

Percentages values of the individual mass transfer resistances for the **acetone** extraction in function of the molar flow ratio solvent/liquid feed (S/F), when the liquid feed flow is F = 0.15 mL/min, P = 6.9 MPa, T = 298 K.

CONCLUSIONES

- ✓ Se ha predicho de manera adecuada el rendimiento de un proceso de extracción con fluidos supercríticos y subcríticos que presenta un gran número de aplicaciones con costos de inversión y operación competitivos
- ✓ Se ha aplicado una metodología austera en requerimientos de cálculo que describe el proceso a un nivel fácilmente escalable
- ✓ Una correcta caracterización hidrodinámica es fundamental al momento de determinar los fenómenos de transporte a través de la membrana
- ✓ El análisis de la etapa controlante del proceso implica la consideración de todas las resistencias locales a al transferencia de masa, incorporando además el efecto del equilibrio de fases que establece la selectividad de esta técnica de extracción
- ✓ La comprensión de los fenómenos de transferencia en este tipo de operaciones permitirá el planteamiento y análisis de técnicas híbridas que incorporen por ejemplo reacción química, las cuales poseen un amplio potencial

GRACIAS POR SU ATENCIÓN

Dr. Julio Romero

Laboratorio de Procesos de Separación por Membranas (Labprosem) juromero@usach.cl

